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A natural interpolation formula, appropriate for a class of Cauchy-type singular integral 
equations with generalized kernels, is suggested. This formula is a generalization of the 
corresponding formula for the same class of equations, but with regular kernels, which has 
been already proved equivalent (under mild assumptions) to Nystrom’s natural interpolation 
formula for Fredholm integral equations of the second kind. The special case when the 
Gauss-Jacobi quadrature rule is used for the numerical solution of Cauchy-type singular 
integral equations with generalized kernels is considered in detail. The superiority of the 
suggested natural interpolation formula to the Lagrangian interpolation formula is illustrated 
in a numerical application. 

1. INTROD~JCTION 

The numerical solution of Fredholm integral equations of the second kind (along a 
finite real interval) by the quadrature (Nystrom) method is the classical method for 
the solution of these equations [ 1, 21. In this method, use is made of Nystrdm’s 
natural interpolation formula for the estimation of the unknown function along the 
whole integration interval on the basis of its values at the nodes of the quadrature 
rule used. The numerical solution of Cauchy-type singular integral equations (also 
along a finite real interval) by the quadrature method appeared with the work of 
Kalandiya (see, e.g., 131) thirty years later and was further developed by several 
authors (see, e.g., [4-l 1 ] and the literature reported there). As regards the natural 
interpolation formula for Cauchy-type singular integral equations, it was suggested 
by this author and reported for the first time in [9]. For Cauchy-type singular 
integral equations reducible to Fredholm integral equations of the second kind, this 
natural interpolation formula was proved (under appropriate but mild assumptions) 
completely equivalent to Nystrom’s natural interpolation formula [lo-l 11. The 
usefulness of the natural interpolation formula for the numerical solution of Cauchy- 
type singular integral equations (clear from the numerical results of 191) and the fact 
that it is analogous to the classical Nystrom’s natural interpolation formula are 
indications that this formula will be widely used in the future. 

Here we shall generalize the results of [9-l l] to the case of Cauchy-type singular 
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integral equations with generalized kernels, that is, kernels presenting a pole at an 
end-point of the integration interval. We shall use as a model a simple integral 
equation of this kind, but the present results can also be generalized to apply to more 
complicated cases. The case when the Gauss-Jacobi quadrature rule is used will be 
considered in detail and the results of [9] will be derived as a very special case. A 
numerical application, based on this quadrature rule, will also be made and the 
superiority of the natural interpolation formula to the Lagrangian (polynomial) inter- 
polation formula will be seen in this application. 

Finally, it should be emphasized that Cauchy-type singular integral equations with 
generalized kernels are not reducible to ordinary Fredholm integral equations of the 
second kind, in contrast to what happens with Cauchy-type singular integral 
equations with regular kernels. Hence, any attempt to generalize the results of 
[lo-l 1] in order to show the equivalence of the suggested natural interpolation 
formula to Nystrom’s seems simply meaningless. 

2. THE NATURAL INTERPOLATION FORMULA 

Let us consider the simple Cauchy-type singular integral equation with a 
generalized kernel 

.I 

j  [ 

1 
-+ l+;-2 +k(s+w=S(I)~ -1 <x< 1, (1) -1 c-x 

where 13 is a known constant and 0 ( )A] < 1, p(t) is the unknown function, k(t, x) is 
a known regular kernel, and f(x) is a known regular function. Generally, the con- 
dition 

-1 
! q(t) dt = 0 (2) 

-1 

supplements (1) in order that (1) possess a unique solution. Singular integral equation 
(1) in the special case when k(t, x) E 0 appears in at least three branches of physics 
and engineering (waveguide theory [ 121, dislocations in metallurgy [ 131, and 
elasticity [ 141); moreover, it possesses a closed-form solution (see, e.g., [ 151 and the 
corresponding literature, including [ 12, 131). 

The difficulty of (1) is due to the appearance of the term ,I/(t + x - 2) in its kernel, 
which tends to infinity as t, x+ 1 simultaneously. Clearly, (1) is the simplest singular 
integral equation of the class considered in this paper (with generalized kernels). 
Much more complicated equations of this kind appear in many problems of physics 
and engineering and have been solved numerically by several researchers. 

Following the developments of [ 141, we take into account the behavior of e?(t) as 
f+ fl by means of the weight function 

w(t) = (1 - Qa(l + t)“, -i <Cr<O, /3-j, 
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with 

cos 7ta = --A, -1 <a<O, (4) 

that is, 

coo> = w(t) g(t), (5) 
where g(t) is a new unknown function. Next, we use an appropriate quadrature rule 
for regular integrals 

<I 
! w(t) g(t) dt 2: + A i g(ti) 

-1 ,T, 
(6) 

(where fi are the nodes and Ai the weights, both dependent on n), convergent for 
increasing values of n for g E P[- 1, 11. For Cauchy-type principal value integrals, 
(6) takes the form [ 161 

1’ w(f)gdf’ ;- A,$+i-#g(x), -1 <x < 1, 
--I rl 1 

x # fi, i = I,..., n, (7) 

where 

with 

K,(x) = q,(xY~n(x) (8) 

a,(x) = r\ (x - fi)T (9) 
i=l 

q,(x) = j”, 2 df. 

This is exactly quadrature rule (6) with the principal part of the error term (due to 
the pole of the integrand) taken into account. 

From the results of [ 171 it follows that (7) converges as n + co for g E P’ i-1, 1 ] 
if (6) converges as n -+ co for g E @‘-1, I]. Finally, from (6) we also obtain 

where the last term in (11) is the principal part of the error term [ 181, generally 
tending to infinity as x --) I + 0. Clearly, (11) converges for the same class of 
functions g(x) for which (6) converges. 
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By using (6), (7), and (11) in (1) and (2), we rewrite these equations as [6], 

5Ai -J-+ 
i=l [ ti -x 1 gnCti) -Fn(x) gnCx> =f(x), (12) 

k A i g,(t,) = 0, (13) 
i=l 

where g,(x) is an approximation to g(x) and 

F,(x) = K,(x) + IK,(2 - x). (14) 

In (12) we have assumed that [6] 

d2 - x> = g(x), (15) 

extending the definition of g(x) in the interval (1, 31. This is reasonable if g’( 1) = 0 
and it happens if d E (0, 1) in (1) [ 191. If 1 E (-1, 0), we have to take into account 
the results of [ 191 and introduce a new unknown function g(t), such that g’( 1) = 0, to 
substitute for g(f). Now, by applying (12) at n - 1 collocation points xk, the roots of 
F,(x), the existence of which wzs proved in [4], Eqs. (12) and (13) reduce to a 
system of n linear algebraic equations, from which g,(ti) are determined [6, 191. 

At this point we can make the following comments: In most cases in practice, the 
second term of the right-hand side of (11) is ignored, but (11) still remains 
convergent (for a fixed value of x). This term is in reality the principal part of the 
corresponding error term. The reason we do not ignore this term during the numerical 
solution of singular integral equations is simply that K,(2 - x) + co as x -+ 1 + 0 (for 
a constant value of n) although K,(2 - x) -+ 0 as n -+ co (for a constant value of x) 
for all classical quadrature rules. During the numerical solution of singular integral 
equations we use collocation points xk very close to 1 as n increases and this 
frequently causes an increase of the absolute value of K,(2 -x) for the first 
collocation point (near the point x = 1). To be sure about the accuracy of our 
numerical results, it is convenient to take into account the aforementioned term in 
(11). But since we do not know the exact value of g(2 -x) and since we are 
interested in this value only when x -+ 1, we can use g( 1) instead of g(2 -x), 
provided, of course, that g’( 1) = 0. Then g(x) does not tend to infinity as x + 1. In 
practice it is more convenient to use (15) for the extension of the definition of g(x) 
for x > 1, but very near to 1. In either case, we succeed in taking into account the 
main part of the error term in (1 1), expressed by the second term of its right-hand 
side. The error made by replacing the value of g(2 - x) by the value of g( 1) (or, 
better, by the value of g(x)) is of the order of 1 - x (if g’( 1) = 0) and is insignificant 
compared to the principal part of the error term in (11). In any case, we can add that 
in many numerical results concerning the solution of singular integral equations with 
generalized kernels, the second term in the right-hand side of (I 1) was ignored, in 
contrast to what is done here as well as in [6]. 
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Now, as regards the determination of g,(x) along the whole interval i-1, 11, we 
suggest, generalizing the results of [9-l 11, that the following natural interpolation 
formula be used (resulting directly from (12)) 

g,(x) = - +) ~fS-~4 [&ft,+;-z + k(ti3 x> gnCti) 3 
n i=l I I I I 

x # ti, i = l)..., n, x # Xk, k = l,...) (n - 1). (16) 

Clearly, this formula is based on the values g,(t,) of g,,(x) at the nodes tj of the 
quadrature rule (6). As regards the values of g,,(x) at the collocation points xk, we 
apply L’Hbpital’s rule to (16) or, equivalently, we differentiate (12) with respect to x 
and apply the resulting equation for x = xk, taking also into account the fact that the 
collocation points xk are the roots of F,(x). Then we obtain 

(ti + Xk - 2y 

k = l,..., (n - 1). (17) 

Equations (16) and (17) permit the determination of g,,(x) along the whole interval 
1-1, 1 ] on the basis of its values at the nodes ti. We can add that when x -+ ti, we 
obtain from (16) 

Fy, g,Cx> = FT  l~a~~x~l~~~x~~~Ail~fi - ‘)I gnCti>ll i = l,..., n, (18) 
, I 

(where (14) was also taken into consideration). By applying L’Hopital’s rule to (18) 
we obtain 

lim gnCx> = - (“L(ti)/4n(ri)) Ai gnCtih i = I,..., n. (19) x+1( 

But we know that (see, e.g., [ 18 ]) 

Ai = -qn(ti)luA(ti), i=l n, . . . . . (20) 

for the weights of an ordinary interpolatory quadrature rule of the form (6). Hence, 
(19) reduces to 

lim g,(X) = gntti>, i = l,..., n, 
x-l{ (21) 

an expected result. Equations (17) and (21) both resulted from (16), our basic natural 
interpolation formula, by elementary limiting procedures; they are not independent of 

(16). 
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We shall now consider the behavior of F,(x) in (16) as x + 1 (the singular point of 
(1)). We rewrite (10) as 

cJ,(t) - a,(z) 
t-z 

dt + o,(z) 1.’ , g dt, L=Xfiycz l-1,1]. (22) .- 

The integrand [a,(t) - o,(z)]/(t - z) in the first term of the right-hand side of (22) is 
clearly a polynomial (because of (9)). Moreover, because of well-known properties of 
Cauchy-type integrals 1201 and expression (3) for the weight function w(t), we see 
directly that 

q,(z) - A(z - 1)” + B, z 6z 1-1, 11, (23) 

(where A and B are constants) as z + 1. For z E [-I, 1 ] we obtain from (23) on the 
basis of the second Plemelj formula [ 201 

q,(z) - fA( 1 - z)” [ exp(ina) + exp(-ina)] + B 

=A(l-z)“cosrra+B, z E (-1, 1). (24) 

Since a,(z) is well behaved as z -+ 1, because of its definition (9), it follows from (14) 
that F,(z) is also well behaved as z -+ 1 because of (23), (24), and the determination 
of the order of the singularity a from (3) and (4). Hence, the denominator F,(x) in 
(16) tends to a finite value (and different from zero) as x + 1. The same 
happens-and it is easier to see this-as x -+ -1. Hence, (16) can be used at the end- 
points of the integration interval [--I, l]. This is necessary if these points are not 
included among the nodes ti of quadrature rule (6), as is usually the case. 

3. APPLICATION OF THE GAUSS-JACOBI QUADRATURE RULE 

The well-known Gauss-Jacobi quadrature rule 1181, associated with a weight 
function w(t) of form (3), is the most frequently used as the quadrature rule (6). For 
this rule we have 

u,(z) = PIpJ’(z), (25) 

where P:,“(z) is the Jacobi polynomial of degree n associated with W(L), and 

where [18] 

qn(z) = zz)p’yz), 

fljp’~b’(~) = I;, W(t) P’,“‘4’(t) dt, 
z -- t 

(26) 

(27) 
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a formula analogous to (10). Moreover, for z@ I-1, l] [18] 

ZZjp,D’(z) = 2(z - l)“(z + l)“Qlp,4’(z), (28) 

where Q, (“,4)(z) is the Jacobi function of the second kind 121, p. 170). 
We take further into account that [ 21, p. 17 11 

x F(n + 1, -n - a - p; 1 - a; + - (z/2)), z@ I-1,1), (29) 

where T(x) denotes the gamma function and F(a, b; c; z) the ordinary hypergeometric 
function. By combining (28) and (29) and taking into account that 121, p. 169 ] 

Py’(l)=z-(n+a+ l)/z(n+ l)T(a+ l), (30) 

we see directly that 

Lyyz) 
P~,~)(z) - -24 sin:, (’ - I)” + 2 

a+nf2(a+ l)T(n+ l)f(n+p+ 1) 

af(n+a+ l)r(n+a+/?+ 1) (31) 

as z + 1 (z 6Z l-1, 11). In this way, the constants A and B in (23) can be explicitly 
determined in the’case of the Gauss-Jacobi quadrature rule. 

As regards Fn(x), it is determined from (14), which, because of (8) (25), and (26) 
is written as 

F,(x) = 
Lyyx) + ~ z7jpq2 -x) 

P!yyx) Ppy2 -x) ’ 
XE (-l,l). (32) 

The value of F,,(x) for x -+ I is of particular importance since this is necessary in the 
natural interpolation formula (16) for the determination of g,( 1) (if 1 is not a node in 
quadrature rule (6)). This value is the reduced stress intensity factor in crack 
problems in plane elasticity. Now, because of (4), (23) (24) and (31), we obtain 
from (32) 

F,,(l) = 2a+’ 
l-cos7raT2(a+1)T(n+1)Z(n+/3+l) 

a T(n+a+ l)T(n+a+P+ 1) ' 

By inserting this value in (16), we find 

&(l 
a T(n+a+ I)T(n+a+/3+ 1) 

)r-2p”-” l-cosna T2(a+ l)T(n+ l)Z(n+p+ I) 

x 
i 
S(l)-$Ai --l--t 

i-l L 
& + k(ti, ‘1 grrCri) . ti-l , I I 

(33) 

(34) 
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A very special case of (1) occurs when L = 0. Then we obtain from (4): (r = -4. In 
this case, (1) is an ordinary Cauchy-type singular integral equation. Moreover, in this 
case (34) reduces to 

since r(Q) = 7c”* and Ai = n/n in this special case, where the Gauss-Jacobi 
quadrature rule reduces to the Gauss-Chebyshev quadrature rule. Equation (35) 
coincides with the corresponding formula found in [9] in this special case (with a 
slightly different notation and k(t, x) = 0). 

4. A NUMERICAL APPLICATION 

We apply the previous developments to the classical singular integral equation 
[6, 12-15, 191 

j;L-‘(l -f))” (&+A) g(t)&= 1, 

accompanied by the condition 

which assures the uniqueness of its solution. The exponents y and 6 are determined 
from 

cos ny = -/I, o<y< I, s=;. (38) 

These equations are analogous to (3) and (4), but the integration interval is now the 
interval [0, I] instead of [-I, I]. 

Now we take into account the closed-form solution of (36) and (37) ] 13 ] 

g(f)= (fY/rcsin(xy/2)) (~(1 + t))“* cosh[ycoshh’(l/t)] 

- (1 -t)“* sinh[y coshP1(l/t)]}. (39) 

From (39) we obtain directly the value of g(0) 

g(0) = 2y(y - 1)/2n sin(ny/2). (40) 

As regards the numerical solution of (36) and (37) it was considered in a series of 
papers (see, e.g., [6, 14, 191). 

Here we wish to show the effectiveness of the natural interpolation formula 
proposed previously for singular integral equations with generalized kernels, exactly 
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as we have done in [9] for the corresponding interpolation formula for ordinary 
singular integral equations (reducible to Fredholm integral equations of the second 
kind). Since the worst point of the integration interval is the “singular” point t = 0, 
we present our numerical results for this point. Moreover, since the aim of this paper 
is to show the efficiency of the natural interpolation formula (compared to the 
Lagrangian interpolation formula), we assumed that these formulas were based on 
exact values for the unknown function g(t) at the nodes used, which are the same for 
both these formulas. 

As regards the natural interpolation formula, we have used (34) which in our case 
takes the following form: 

g,(l) = - 
yqn-y-t 1)~(n-y-6-t 1) 

I 

1 -- 
P-y+ l)T(n+ l)T(n-6+ 1) 1 +II 

6 A’g,(tJ . 
i’r; ti I 

(41) 

In this equation, the values of the nodes ti (roots of the shifted Jacobi polynomial 
%Y.-6)(f)) and of the corresponding weights Ai were obtained from 1221. The values 
of” g,(ti) were calculated by using (39) as already mentioned. As regards the 
Lagrangian (polynomial) interpolation formula, it can be easily constructed on the 
basis of the values of g,(ti), either directly as an interpolation polynomial or by 
taking into account the results of Krenk [23], based on the orthogonality properties 
of the Jacobi polynomials. 

In Table I we display the numerical results for g,,(O) in the case when y = 0.7 (so 
that A > 0, (38), as already mentioned; in fact, A= 0.587785 in this case) and for 
n = I,..., 6 by the aforementioned interpolation formulas, denoted by the subscripts 
(N, natural) and (L, Lagrangian), respectively. We present also the values of g(t) at 
the node t, nearest to the point t = 0, the theoretical value of g(O), determined from 
(40), as well as the relative errors for both interpolation formulas. It is clear from the 
results of Table I that the natural interpolation formula for singular integral equations 
with generalized kernels is superior to the corresponding Lagrangian interpolation 
formula. Therefore, it is believed that the natural interpolation formula may substitute 

TABLE I 

Comparison of the Values of g(0) (and the Corresponding Relative Errors) of the Solution g(r) of (36) 
and (37) (for y = 0.7 and n = I,..., 6), Obtained by the Natural Interpolation Formula (Subscript N) and 

by the Lagrangian Interpolation Formula (Subscript L) 

n se,) &do) g,(O) 1;,(O) Cl (0) 

1 -0.015072 -0.07496 1 -0.015072 -13.89% -82.69’k, 
2 -0.075586 -0.08583 I -0.100111 -1.40% 15 .OO’KI 
3 -0.083046 -0.086693 -0.089800 -0.4 1% 3.16% 

4 -0.085 106 -0.086897 -0.0880 15 -0.18% 1.1 1%) 
5 -0.085925 -0.086971 -0.087504 -0.09’%1 0.52% 
6 -0.086325 -0.087004 -0.087305 -0.06% 0.29% 

Theoretical value: -0.087053 
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in practical applications of singular integral equations with generalized kernels for the 
Lagrangian interpolation formula, exactly as has been the case with Fredholm 
integral equations of the second kind [ 1, 2 1. 

ACKNOWLEDGMENTS 

The results reported here belong to a research project sponsored by the National Hellenic Research 
Foundation. The financial support of this Foundation is most gratefully acknowledged. 

REFERENCES 

I. E. J. NYSTR~~M, Acta Math. 54 (1930), 185-204. 
2. K. E. ATKINSON, “A Survey of Numerical Methods for the Solution of Fredholm Integral Equations 

of the Second Kind,” SIAM, Philadelphia, 1976. 
3. A. I. KALANDIYA, Dokl. Akad. Nauk SSSR 125 (1959). 715-718. (English translation available 

from the British Library, Lending Division, RTS 8730.) 
4. P. S. THEOCARIS AND N. I. IOAKIMIDIS, Pragm. Akad. Athem% (Trans. Acad. Athens) 40 (I ) 

(1977). l-39 (in English). 
5. P. S. THEOCARIS AND N. I. IOAKIMIDIS, J. Comput. Phys. 30 (1979). 309-323. 
6. N. 1. IOAKIMIDIS AND P. S. THEOCARIS, Comput. and Structures 11 (1980), 289-295. 
7. M. L. Dow AND D. ELLIOTT, SIAM J. Numer. Anal. 16 (1979), 115-134. 
8. M. E. GOLBERG (Ed.), “Solution Methods for Integral Equations,” Plenum, New York. 1979. 
9. P. S. THEOCARIS AND N. I. IOAKIMIDIS, J. Engrg. Math. 13 (1979), 213-222. 

IO. N. I. IOAKIMIDIS, Computing 26 (1981), 73-77. 
I I. N. I. IOAKIMIDIS, J. Comput. Appl. Math. 8 (1982) 81-86. 
12. L. LEWIN, IRE Trans. Microwave Theory Tech. MTT-9 (1961). 321-332. 
13. E. SMITH, Scripta Metall. 3 (1969), 415-418. 
14. F. ERDOGAN AND T. S. COOK, Internal. J. Fracture IO (1974). 227-240. 
15. W. E. WILLIAMS, J. Inst. Math. Appl. 22 (1978), 211-214. 
16. N. I. IOAKIMIDIS AND P. S. THEOCARIS. Rev. Roumaine Sci. Tech. S&r. M&. Appl. 22 (1977). 

803-818. 
17. D. ELLIOTT AND D. F. PAGET, Math. Comp. 33 (1979). 301-309. 
18. J. D. DONALDSON AND D. ELLIOTT, SIAM J. Numer. Anal. 9 (1972). 573-602. 
19. P. S. THEOCARIS AND N. 1. IOAKIMIDIS. Internal. J. Fracture 13 (1977), 549-552. 
20. F. D. GAKHOV, “Boundary Value Problems,” Pergamon and Addison-Wesley, Oxford. 1966. 
21. A. ERDALYI (Ed.), W. MAGNUS, F. OBERHETTINGER, AND F. G. TRICOMI, “Higher Transcendental 

Functions” (H. Bateman Manuscript Project). Vol. II. McGraw-Hill. New York, 1953. 
22. V. I. KRYLOV, V. V. LUGIN. AND L. A. YANOVICH. “Tables for the Numerical Integration of 

Functions with Power Singularities 1: x”( I ~ x)” f(x) dx,” Izdatel’stvo Akademii Nauk BSSR. 
Minsk, 1963 (in Russian). 

23. S. KRENK, Quart. Appl. Math. 32 (1975), 479484. 


